Oxidation–Reduction Cycles of Peroxiredoxin Proteins and Nontranscriptional Aspects of Timekeeping
نویسندگان
چکیده
The circadian clock allows organisms to accurately predict the earth's rotation and modify their behavior as a result. Genetic analyses in a variety of organisms have defined a mechanism based largely on gene expression feedback loops. However, as we delve more deeply into the mechanisms of circadian timekeeping, we are discovering that post-translational mechanisms play a key role in defining the character of the clock. We are also discovering that these modifications are inextricably linked to cellular metabolism, including redox homeostasis. A robust circadian oscillation in the redox status of the peroxiredoxins (a major class of cellular antioxidants) was recently shown to be remarkably conserved from archaea and cyanobacteria all the way to plants and animals. Furthermore, recent findings indicate that cellular redox status is coupled not only to canonical circadian gene expression pathways but also to a noncanonical transcript-independent circadian clock. The redox rhythms observed in peroxiredoxins in the absence of canonical clock mechanisms may hint at the nature of this new and hitherto unknown aspect of circadian timekeeping.
منابع مشابه
Metabolic Cycles in Yeast Share Features Conserved among Circadian Rhythms
Cell-autonomous circadian rhythms allow organisms to temporally orchestrate their internal state to anticipate and/or resonate with the external environment. Although ∼24-hr periodicity is observed across aerobic eukaryotes, the central mechanism has been hard to dissect because few simple models exist, and known clock proteins are not conserved across phylogenetic kingdoms. In contrast, contri...
متن کاملCross‐talk between circadian clocks, sleep‐wake cycles, and metabolic networks: Dispelling the darkness
Integration of knowledge concerning circadian rhythms, metabolic networks, and sleep-wake cycles is imperative for unraveling the mysteries of biological cycles and their underlying mechanisms. During the last decade, enormous progress in circadian biology research has provided a plethora of new insights into the molecular architecture of circadian clocks. However, the recent identification of ...
متن کاملMetaclocks.
We live in a ‘24-hour’ culture in which transatlantic air travel and shift-work are part of normal life for many people. these types of desynchronization—being awake when the body expects to be asleep, as with jet-lag— disrupt our daily physiological cycles and are increasingly being linked to diseases such as diabetes, obesity and cancer. Daily rhythms are also impaired in the elderly, as well...
متن کاملMammalian Circadian Period, But Not Phase and Amplitude, Is Robust Against Redox and Metabolic Perturbations
AIMS Circadian rhythms permeate all levels of biology to temporally regulate cell and whole-body physiology, although the cell-autonomous mechanism that confers ∼24-h periodicity is incompletely understood. Reports describing circadian oscillations of over-oxidized peroxiredoxin abundance have suggested that redox signaling plays an important role in the timekeeping mechanism. Here, we tested t...
متن کاملRedox and Metabolic Oscillations in the Clockwork
Daily (circadian) clocks have evolved to coordinate behaviour and physiology around the 24-h day. Most models of the eukaryotic circadian oscillator have focused principally on transcription/translation feedback loop (TTFL) mechanisms, with accessory cytosolic loops that connect them to cellular physiology. Recent work, however, questions the absolute necessity of transcription-based oscillator...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 54 شماره
صفحات -
تاریخ انتشار 2015